Social Computing term projects

Code	Project title and description	Mentors	Student group
SC01	Functional vs Operational transparency in algorithmic decisions Bringing transparency to black-box decision making systems has been a topic of increasing research interest in recent years. There are two broad approaches to bring transparency: (i) functional transparency, i.e., learn the behavior of the decision function for different types of inputs, (ii) operational transparency: learn by looking at the procedures or operations performed. In this work, by analyzing recommendation system deployed at New York Times website, we want to compare these two approaches.	Abhijnan Chakraborty <u>chakraborty.ab</u> <u>hijnan@gmail.</u> <u>com</u>	=== Group 5 === 17CS60R17 Titas Sarkar 17CS60R25 Bhanupriya Pegu 17CS60R37 Soma Kundu 17CS60R62 Sushma Kumari 17CS60R80 Jagriti Jalal
SC02	Detecting overlapping community in multilayer network Detecting communities or clusters in networks has been a traditional problem in network science. There has been a lot of work on detecting communities which are overlapping with each other which happens in most of the real cases. However all this works are on single networks. But, in recent times, most of the networks are found to be interconnected with many other networks. In this work we would detect communities in such interconnected multilayer networks.	Soumajit Pramanik <u>soumajit.pram</u> <u>anik@gmail.co</u> <u>m</u>	=== Group 11 === 17CS60R44 Prashant Chauhan 17CS60R69 Umang Chaturvedi 17CS60R51Vikash Chaurasiya 16AT92R09 Sukanya Samanta 17CS90J01 Kalyani Roy
SC03	Analyzing dynamics of Meetup groups In Meetup groups organize events. But most of the groups are not static. The groups grow, shrink, split into multiple groups or merge with others. In this work we would analyze this behaviours of this groups. We would figure out the underlying reasons behind this dynamics and aim to predict this dynamics earlier using some signals. We would apply machine learning based techniques in such predictions.	Soumajit Pramanik <u>soumajit.pram</u> <u>anik@gmail.co</u> <u>m</u>	=== Group 9 === 12CS30029 Sabyasachee Baruah 14CS10003 Akhil Jain 14CS10058 Satyesh Mundra 14CS10059 Vaishal Shah 14EC10059 Vasudha Todi
SC04	Application of EM Algorithm to quantify measurement errors in network data In this project we will explore probabilistic error models in graphs. To form a network we generally do a set of experiments and take some measurements which have some probability of being erroneous. Based on the actual measurements we will try to estimate the parameters of the error distribution using EM algorithm , which can act as a data filtering technique	Soumya Sarkar portkey1996@ gmail.com	=== Group 12 === 14MA20026 Rahul Mishra 14MA20057 Shivam Agarwal 14NA30013 Jayant Jeena 14NA30025 Sankalp Apharande
SC05	Learning node representations of dynamic network We plan to learn latent representations of nodes in a dynamic setting. Existing network representations techniques are explicitly designed for static graphs. In this project we plan to extend it to dynamic networks where nodes and edges appear as well as disappear over time. We plan to leverage RNN and random walk for our task.	Sandipan Sikdar <u>sikdarsandipan</u> <u>99@gmail.co</u> <u>m</u> Abir De <u>abir.iitkgp@g</u> <u>mail.com</u>	=== Group 4 === 14CS30002 Aditya Bhagwat 14CS30013 Kushagra Aggarwal 14CS30010 Gulab Arora 14CS10029 Kunal 14CS30016 Madhuresh Kumar
SC06	Social Analysis of Scientific misinformation detection in news media We plan to study the social media activities around existing exaggerated news articles	Jasabanta Patro jasabantapatro @gmail.com	=== Group 6 === 17CS60R15 Sumit Verma 17CS60R55 Rajesh Kr Ranjan 17CS60R39 Lal Vaishnava 17CS60R19 Aniket Deroy 17CS60R54 Vineet Herenj

SC07	Competition modeling using adversarial network In this project we are planning to build an adversarial Network which can be used to model competition of similar products or related hashtags. This is one form of reinforcement learning and can be well captured through adversarial nets.	Bidisha Samanta bidisha.samant a@gmail.com Abir De abir.iitkgp@g mail.com	=== Group 3 === 17CS91P01 Avirup Saha 17CS71P03 Soumyadeep Roy 13CS30012 Kushal Rajiv Gaikwad 13CS30034 Srinidhi 13CS30002 Abhay Shukla
SC08	Temporal analysis of Indian politics data In this project we plan to consider data related to Indian politics and leverage network analysis techniques to analyze temporal patterns.	Sandipan Sikdar <u>sikdarsandipan</u> <u>99@gmail.co</u> <u>m</u>	=== Group 8 === 14CS10037 Sri Charan Reddy 14CS10020 Sai Bharath Chandra 14CS30001 Aakash Verma 14CS10010 Sanjith Bonela 17CS60R67 Shubham Patel
SC09	Correlating information obtained from online and offline sources during disaster situation Attempts towards using online social media to find critical information during disaster situation, are often questioned as to how well information obtained from OSM correlates with the actual situation in the offline world. In this project, we will investigate this question by comparing social media posts with other sources of information during two recent disasters.	Koustav Rudra <u>krudra5@gmai</u> <u>l.com</u>	=== Group 7 === 14CS10052 Vikash Minz 14CS30017 Surya Midatala 13ME33008 Anshuman Agrawal 13AE30017 Thakur Shivam Singh 14CS10002 Aditya Jain
SC10	Automatically detecting clickbaits from Twitter This is a tool building project, where given a tweet, the task is to classify it into clickbaits or non-clickbaits. We can treat this as the clickbait challenge task: <u>http://www.clickbait-challenge.org/</u> The training and test data are given in this website. The goal is to build a tool with good performance, which provides better accuracy compared to my earlier paper <u>http://cse.iitkgp.ac.in/~abhijnan/papers/chakraborty_clickbait_ason</u> <u>am16.pdf</u>	Abhijnan Chakraborty <u>chakraborty.ab</u> <u>hijnan@gmail.</u> <u>com</u>	=== Group 10 === 17CS60S01 Nikhil Parmar 17CS60R73 Ainuddin Khan 17CS60R45 Ashwin Singh 17CS60R13 Nishant Pant
SC11	Measurement and analysis of recommendation networks Several websites gives recommendations for other items when we are viewing one item (e.g., IMDB movies, Quora questions). In this project, we will study such systems, by constructing a "recommendation network". In such directed networks, the nodes are the items (e.g., movies in IMDB or questions in Quora), and an edge A>B represents that item B was recommended on the page of item A. We will create recommendation networks for some popular sites like Quora and IMDB and study the properties of the networks.	Suman Kalyan Maity <u>sumankalyanni</u> <u>t@gmail.com</u>	=== Group 2 === 14CS10022 Ishaan Sang 14CS10041 Sahil Rishi 14CS10043 Shubham Jain 14CS10045 Siddhant Singh 14CS10055 Yash Agrawal 17CS91R01 Abhisek Dash
SC12	Utilising OSM for disaster preparedness and relief operations In this project, we will develop usable systems for extracting important information from OSM during disaster situations	Saptarshi Ghosh <u>saptarshi@cse.</u> iitkgp.ernet.in	=== Group 1 === 14CS30041 Ritam Dutt 14CS30011 Kaustubh Hiware 14CS30027 Rameshwar Bhaskaran 14CH3FP18 Avijit Ghosh 14MA20021 Nishant Nikhil