Subgraphs and Community Structure of Networks

Saptarshi Ghosh

Department of CSE, IIT Kharagpur

Social Computing course, CS60017

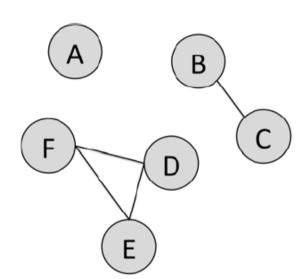
Subgraphs

A subset of nodes and edges in a network

Given a (social) network, what are some subgraphs of interest?

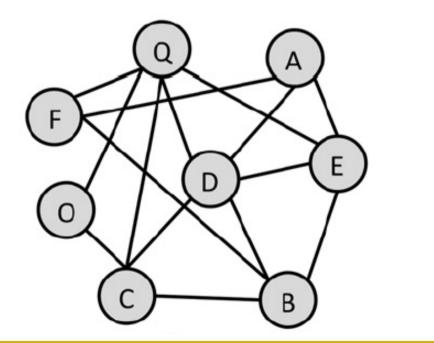
Subgraphs

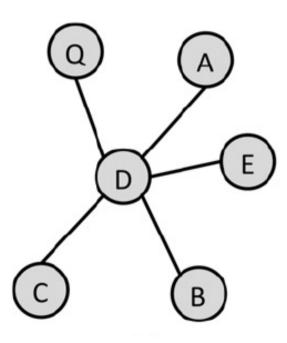
- A subset of nodes and edges in a network
- Given a (social) network, what are some subgraphs of interest?
 - Singletons: Isolated nodes
 - Connected components
 - Triads or triangles
 - Larger cliques



Egocentric networks

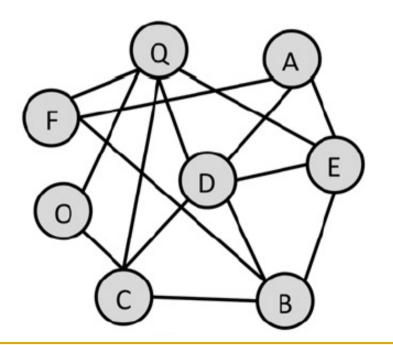
- From the perspective of a node (user)
- 1-degree egocentric network: a node and all its connections to its neighbors

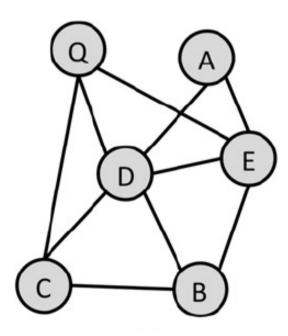




Egocentric networks

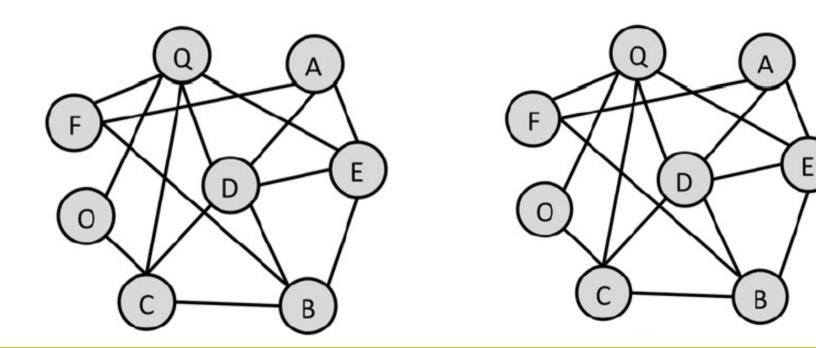
 1.5-degree egocentric network: a node, all its connections to its neighbors, and the connections among the neighbors





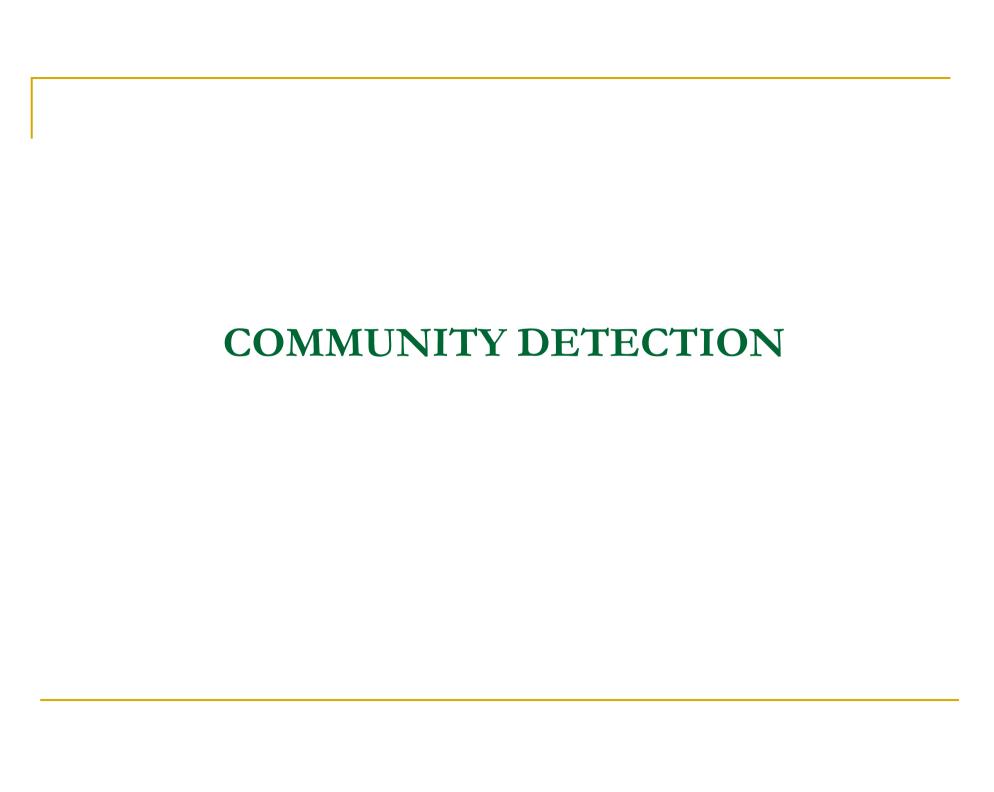
Egocentric networks

 2-degree egocentric network: a node, all its neighbors, all neighbors of neighbors, and the connections among all these nodes



Communities

- Community or network cluster
 - Typically a group of nodes having more and / or better interactions among its members, than between its members and the rest of the network
- No unique formal definition



Community detection algorithms

 Lot of applications – identifying similar nodes, close friends, recommendation, ...

- Challenging
 - Communities are not well-defined
 - Number of communities in a network is not known

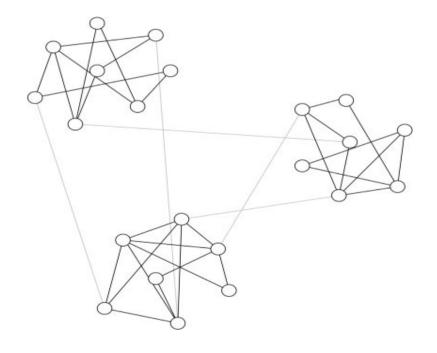
Two broad types of algorithms

- Detection of disjoint communities
 - Each community is a partition of the network

- Detection of overlapping communities
 - A node can be members of multiple communities

Algorithm by Girvan & Newman

- Community structure in social and biological networks, PNAS, 2002
- Focus on edges that are most "between" communities



Edge betweenness

- Edge betweenness of an edge e: fraction of shortest paths between all pairs of vertices, which run through e
- Edges between communities are likely to have high betweenness centrality
- Progressively remove edges having high betweenness centrality, to separate communities from one another

Girvan-Newman algorithm

- Compute betweenness centrality for all edges
- 2. Remove the edge with highest betweenness centrality
- 3. Re-compute betweenness centrality for all edges affected by the removal
- 4. Repeat steps 2 and 3 until no edges remain
- Time complexity
 - Graph of *n* vertices and *m* edges: betweenness centrality of all edges can be computed in *O(mn)* time
 - □ Hence, worst case time complexity: $O(m^2n)$

How many communities?

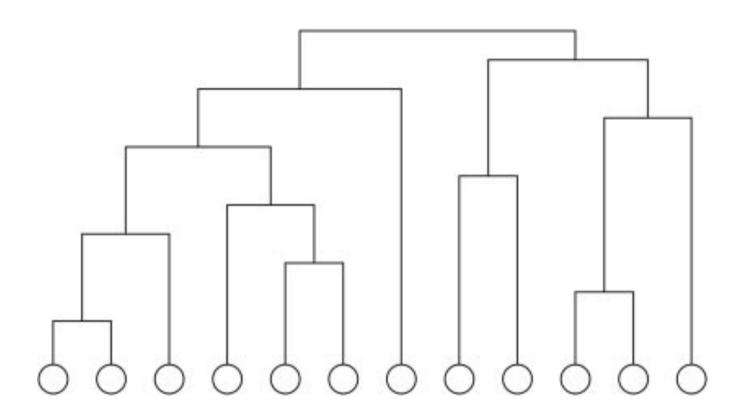
 Community structure of a graph is hierarchical, with smaller communities nested within larger ones

 Represented as a hierarchical clustering tree: dendrogram

 A "slice" through the tree at any level gives a certain number of communities

Which level to slice at?

An example dendrogram



Hierarchical clustering algorithms

- Agglomerative algorithms (bottom-up)
 - Clusters / communities iteratively merged if their similarity is sufficiently high
- Divisive algorithms (top-down)
 - Clusters / communities iteratively split by removing edges
- Both can be represented by dendrograms
- Need some way to decide at what level to slice the dendrogram – what is a good community structure?

Objective functions for CD

- Community or network cluster
 - Typically a group of nodes having more and / or better interactions among its members, than between its members and the rest of the network
- Typical CD algorithms
 - Choose an objective function that captures the above intuition
 - Optimize the objective function using heuristics or approximation algorithms

OBJECTIVE FUNCTIONS FOR COMMUNITY DETECTION

Empirical Comparison of Algorithms for Network Community Detection, Leskovec et al., WWW 2010

Various objective functions

- Two criteria of interest for measuring how well a particular set S of nodes represents a community
 - Number of edges among the nodes within S
 - Number of edges between nodes in S and rest of network
- Two types of objective functions
 - Single criterion considers any one of the above criteria
 - Multi criterion considers both the above criteria

Multi-criterion scores

 Consider both the criteria for measuring quality of a set S of nodes

 Lower values of f(S) signify a more community-like set of nodes

Notations

- G = (V, E) is the network.
- n = |V| = number of nodes
- = m = |E| = number of edges
- $d(u) = k_u =$ degree of node u
- S: set of nodes
- $n_s = number of nodes in S$
- m_s = number of edges within S (both nodes in S)
- c_s = number of edges on the boundary of S

Expansion

$$f(S) = \frac{c_S}{n_S}$$

 Number of edges per node in S, that points outside the set S

Internal density

$$f(S) = 1 - \frac{m_S}{n_S(n_S-1)/2}$$

Internal edge density of the set S

Cut Ratio

$$f(S) = \frac{c_S}{n_S(n - n_S)}$$

Fraction of all possible edges leaving the set S

Conductance

$$f(S) = \frac{c_S}{2m_S + c_S}$$

- Fraction of total edge volume that points outside the cluster
- Edge volume = sum of node-degrees
- Effectively, tatio between number of edges inside S and the number of edges leaving S

Normalized Cut

$$f(S) = \frac{c_S}{2m_S + c_S} + \frac{c_S}{2(m - m_S) + c_S}$$

What does this measure physically signify?

Maximum Out Degree Fraction (ODF)

$$\max_{u \in S} \frac{|\{(u,v): v \notin S\}|}{d(u)}$$

 Maximum fraction of edges of a node in S, that points outside the set S

Average ODF

$$f(S) = \frac{1}{n_S} \sum_{u \in S} \frac{|\{(u,v): v \notin S\}|}{d(u)}$$

 Average fraction of edges of nodes in S, that points outside S

Flake ODF

$$f(S) = \frac{|\{u:u \in S, |\{(u,v):v \in S\}| < d(u)/2\}|}{n_S}$$

 Fraction of nodes in S that have fewer edges pointing inside S, than to outside S

Observations by Leskovec et al.

- Internal density and Maximum-ODF are not good measures for community quality
 - Does not show much variation, except for very small communities
- Cut ratio has high variance
 - communities of similar sizes can have very different numbers of edges pointing outside
- Flake-ODF prefers larger communities
- Conductance, expansion, normalized cut, average-ODF all exhibit qualitatively similar behavior

Single-criterion scores

- Consider only one of the two criteria for measuring quality of a set S of nodes
- Two simple single-criterion scores:
 - Volume: Sum of degrees of the nodes in S
 - Edges Cut: c_s: Number of edges needed to be removed to disconnect nodes in S from the rest of the network

Modularity-based measures

 A set of nodes is a good community if the number of edges within the set is significantly more than what can be expected by random chance

• Modularity Q =
$$\frac{1}{4m}(m_S - E(m_S))$$

- Number of edges within set S, minus expected number of edges within the set S
- The 1/4m factor is merely conventional

Modularity ratio

$$\frac{m_S}{E(m_S)}$$

- Alternative measure of how well set S represents a community
- Ratio of the number of edges among nodes in S, and expected number of such edges in null model

Expected number of edges

- Null model: Erdos-Renyi random network having the same node degree sequence as the given network
- Realised in practice using Configuration Model
- Expected to have no community structure

Mathematical definition of Modularity

- For two particular nodes i and j:
 - \square Number of edges between the nodes: A_{ij}
 - □ Degrees: *k_i, k_i*
 - □ Expected number of links between i and j: $k_i k_j /2m$
- Do the nodes i and j have more edges than expected by random chance?

$$A_{ij} - k_i k_j /2m$$

Modularity for a given network

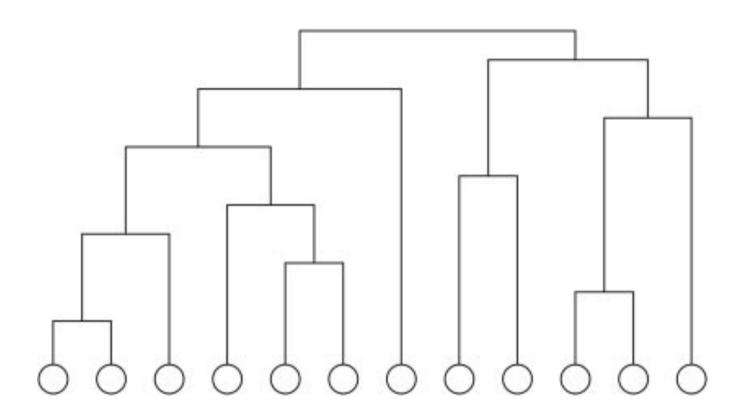
$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$

■ The delta function is 1 if both nodes i and j are in the same community ($C_i = C_j$), 0 otherwise

Using modularity for CD

- Modularity can be used to decide at which level to slice the dendrogram
- Optimize modularity
 - Exhaustive maximization is NP-hard
 - Heuristics and approximations used

An example dendrogram



Greedy algorithm for maximizing Q

- Fast algorithm for detecting community structure in networks, Newman, PRE 69(6), 2004
- Greedy agglomerative hierarchical clustering
 - Start with n clusters, each containing a single node
 - Add edges such that the new partitioning gives the maximum increase (minimum decrease) of modularity wrt the previous partitioning
 - A total of n partitionings found, with number of clusters varying from n to 1
 - Select the partitioning having highest modularity

Most popular Q optimization algorithm

Louvain algorithm:

https://perso.uclouvain.be/vincent.blondel/research/louvain.html

Optimization in two steps

- Step 1: look for small communities optimizing Q locally
- Step 2: aggregate nodes in the same community and build a new network whose nodes are the communities
- Repeat iteratively until a maximum of modularity is attained and a hierarchy of communities is produced
- Time: approx O(n log n)

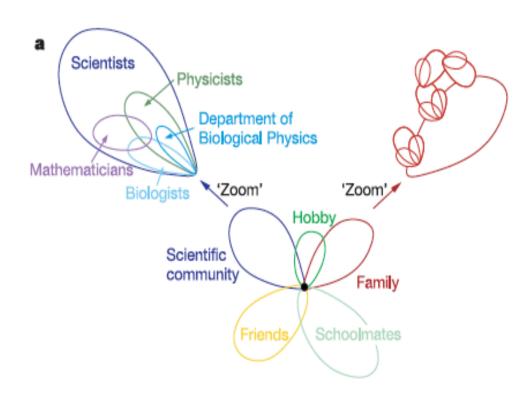
For reading

- Many subsequent works have suggested improvements for maximizing modularity
 - Reducing time complexity
 - Normalizing with number of edges to minimize bias towards larger communities
 - ...
- Read "Community detection in graphs" by Fortunato, Physics Reports, 2010.

OVERLAPPING COMMUNITY DETECTION

Overlapping communities

 Nodes in real networks are often parts of multiple overlapping communities



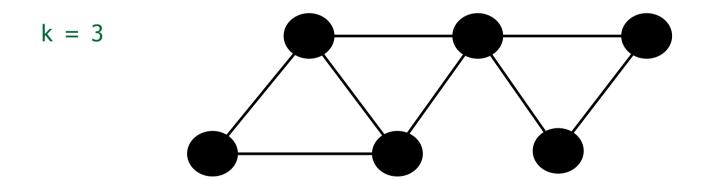
Two algorithms

- Clique Percolation Method
 - Uncovering the overlapping community structure of complex networks in nature and society, Palla et al., Nature Letters, vol. 435, 2005
- Link communities
 - Link communities reveal multiscale complexity in networks, Ahn et al., Nature Letters, vol. 466, 2010

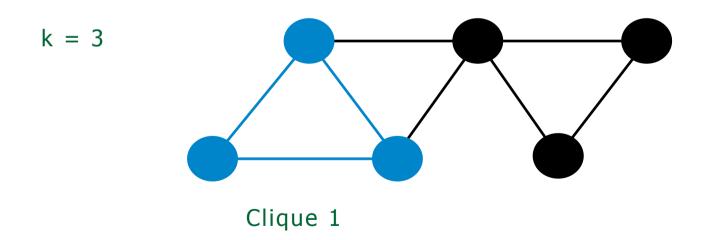
Clique Percolation Method

- Concept:
 - Internal edges of communities likely to be part of cliques
 - Inter-community edges unlikely to be part of cliques
- Adjacent k-cliques: two k-cliques are adjacent if they share k-1 nodes

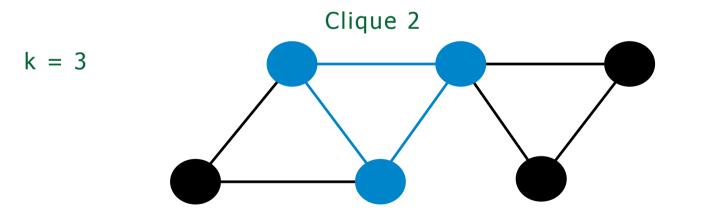
Adjacent k-cliques



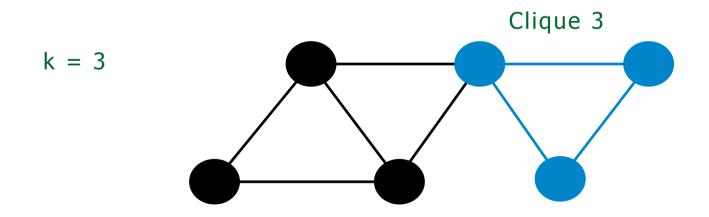
Adjacent k-cliques



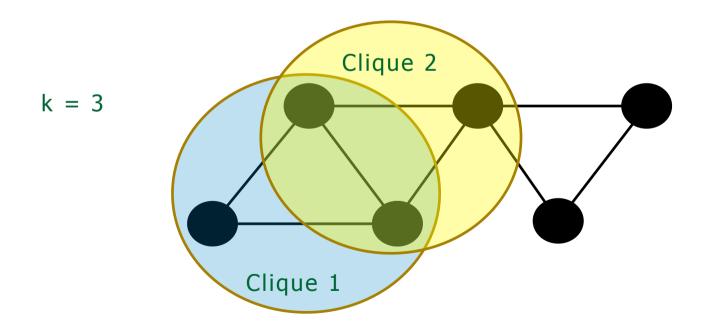
Adjacent k-cliques



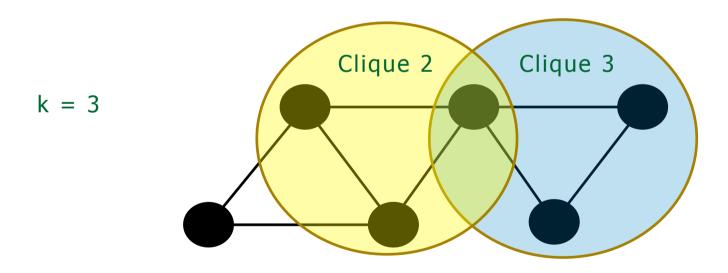
Adjacent k-cliques



Adjacent k-cliques



Adjacent k-cliques

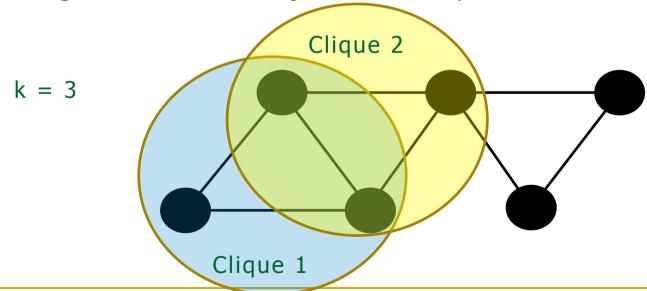


k-clique community

Union of all k-cliques that can be reached from each other

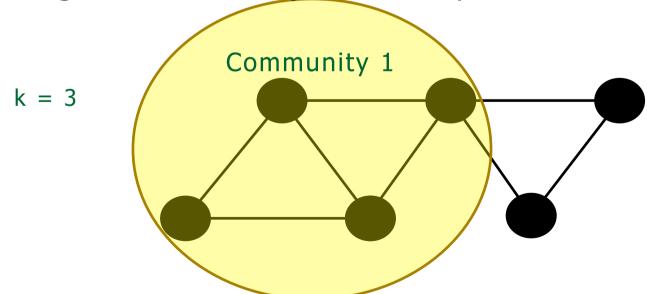
k-clique community

Union of all k-cliques that can be reached from each other



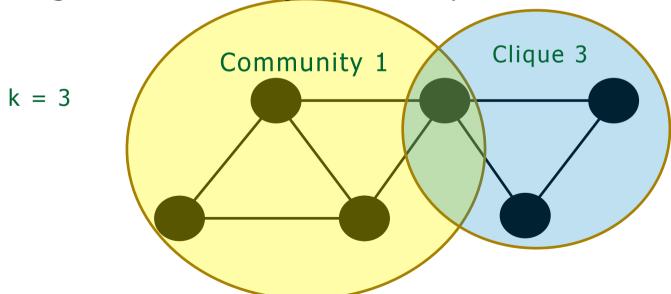
k-clique community

Union of all k-cliques that can be reached from each other



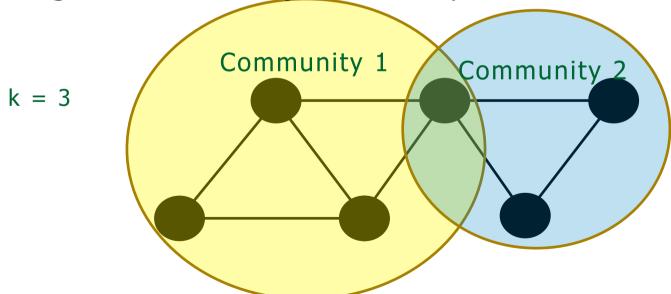
k-clique community

Union of all k-cliques that can be reached from each other



k-clique community

Union of all k-cliques that can be reached from each other



Algorithm

- Locate maximal cliques
- Convert from cliques to k-clique communities

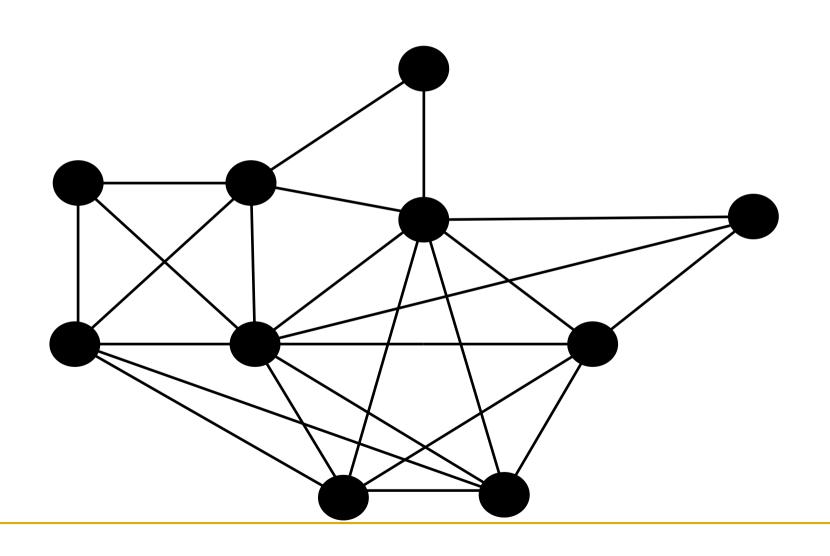
Locate Maximal Cliques

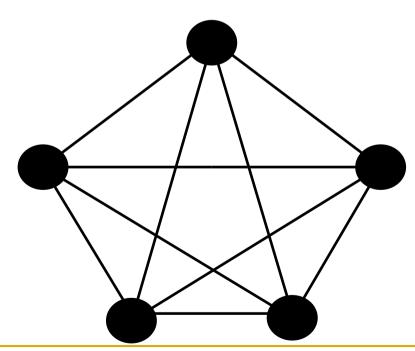
 Largest possible clique size can be determined from degrees of vertices

 Starting from this size, find all cliques, then reduce size by 1 and repeat

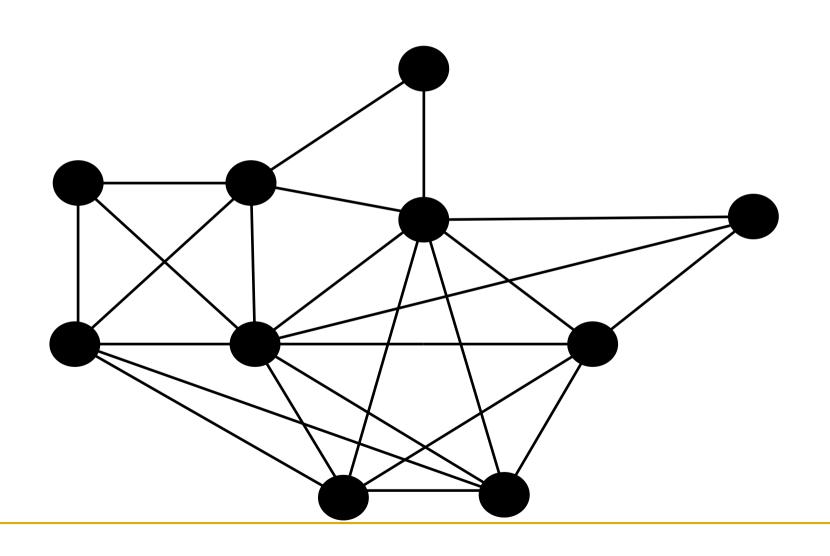
Algorithm

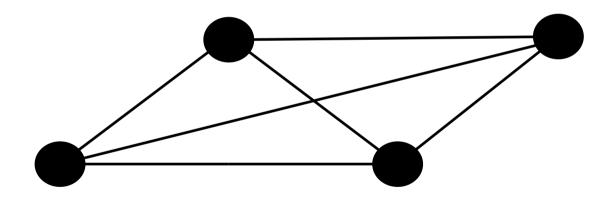
- Locate maximal cliques
- Convert from cliques to k-clique communities



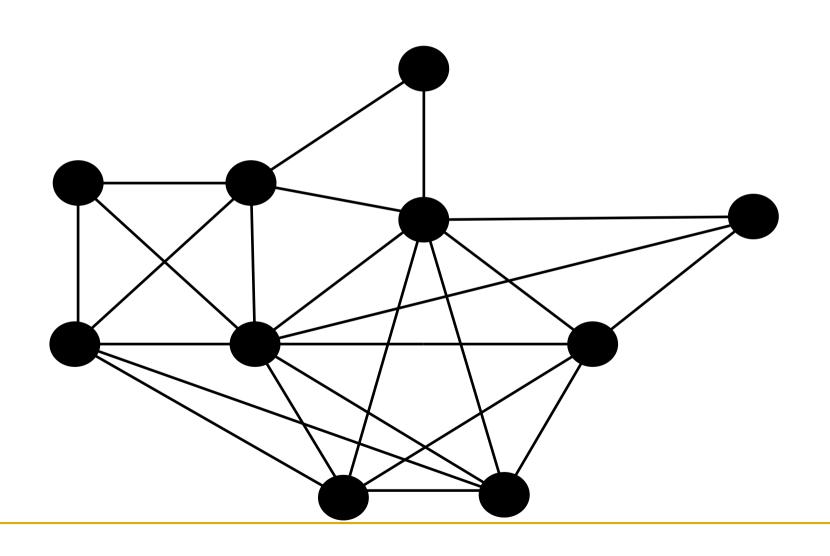


Clique 1: 5-clique

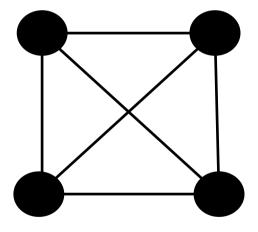


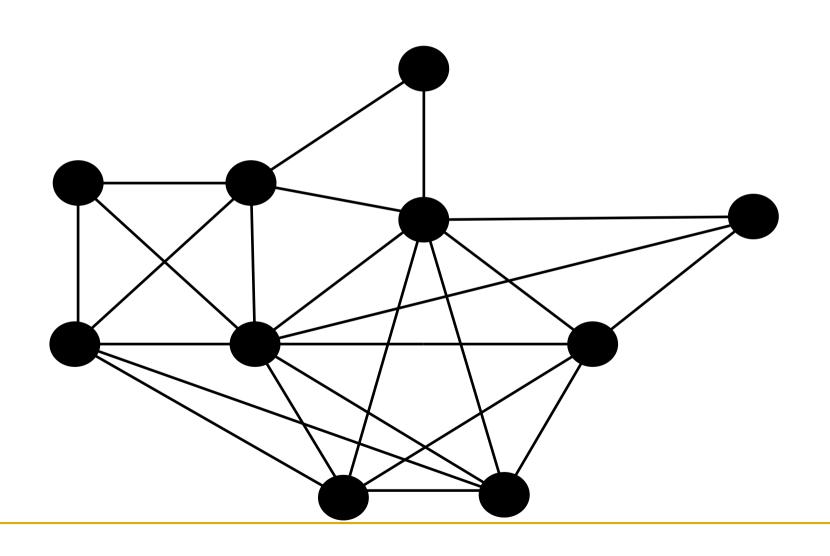


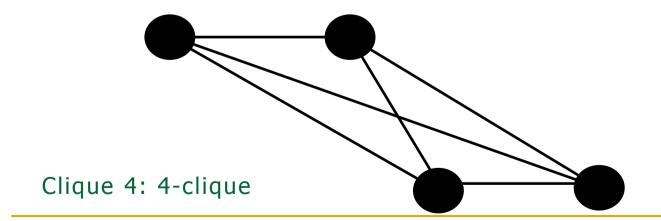
Clique 2: 4-clique

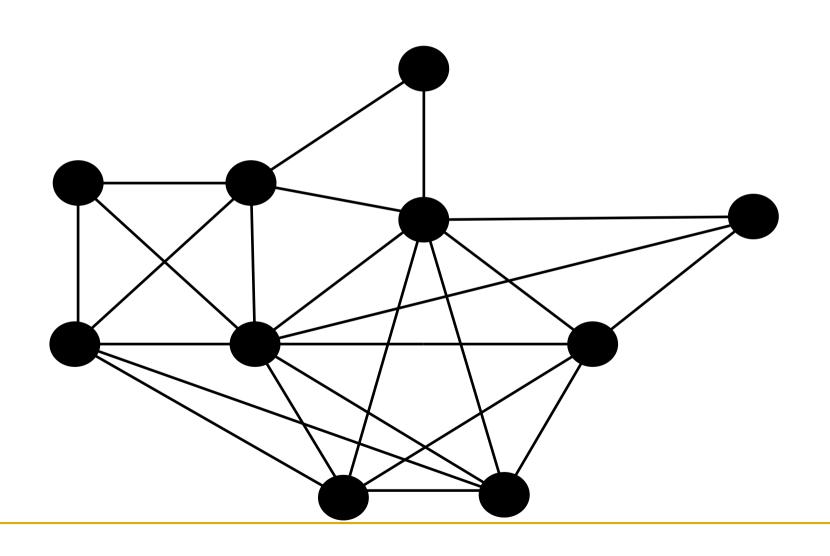


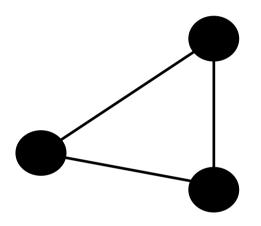
Clique 3: 4-clique



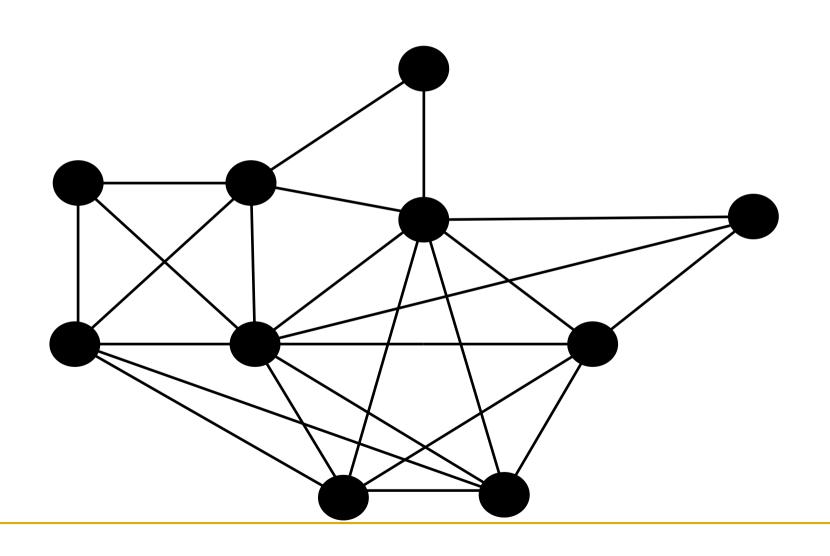




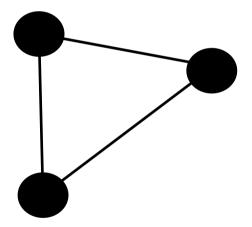




Clique 5: 3-clique



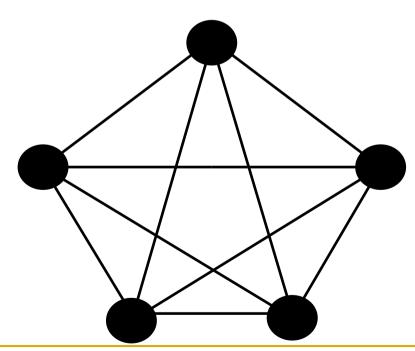
Clique 6: 3-clique



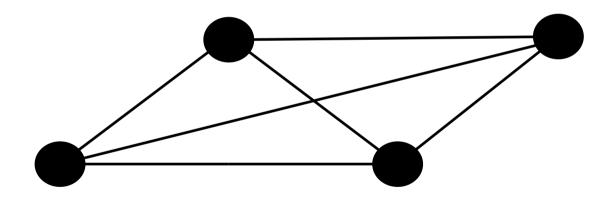
	1	2	3	4	5	6
1	5					
2		4				
3			4			
4				4		
5					3	
6						3

Clique-Clique overlap matrix

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3



Clique 1: 5-clique



Clique 2: 4-clique

Clique-Clique overlap matrix

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

- For a given value of k, k-clique communities:
 - Connected clique components in which neighboring cliques are linked to each other by at least k-1 common nodes
- How to find k-clique communities from the cliqueclique overlap matrix?
 - Erase every diagonal element smaller than k
 - Erase every off-diagonal element smaller than k-1
 - Replace remaining elements by 1
 - Carry out a component analysis of this matrix

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

		2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	3	2
6	2	2	2	1	2	3

k=4

		2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

Delete if less than k

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

	1	2	3	4	5	6
1	5	3	1	3	1	2
2	3	4	1	1	1	2
3	1	1	4	2	1	2
4	3	1	2	4	0	1
5	1	1	1	0	0	2
6	2	2	2	1	2	0

k=4

	1	2	3	4	5	6
1	5	3	0	3	0	0
2	3	4	0	0	0	0
3	0	0	4	0	0	0
4	3	0	0	4	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Delete if less than k-1

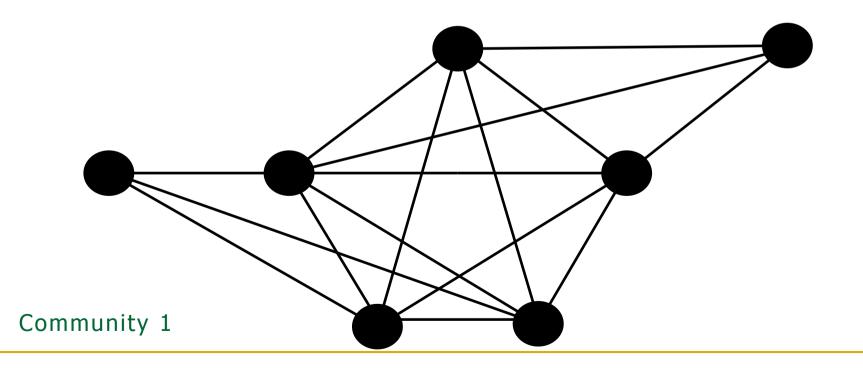
	1	2	3	4	5	6
1	5	3	0	3	0	0
2	3	4	0	0	0	0
3	0	0	4	0	0	0
4	3	0	0	4	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

k=4

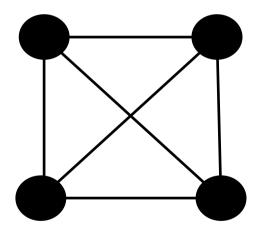
	1	2	3	4	5	6
1	1	1	0	1	0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Change all non-zeros to 1

	1	2	3	4	5	6
1	1	1	0	1	0	0
2	1	1	0	0	0	0
3	0	0	1	0	0	0
4	1	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



k=4



Community 2

Clique Percolation Method: Analysis

- Believed to be non-polynomial
- No closed formula can be given
- However, claimed to be efficient on real systems

Limitations

- Fail to give meaningful covers for graph with few cliques
- With too many cliques, might give a trivial community structure

Link communities

- A node might belong to multiple communities
 - For a person: family, co-workers, friends, ...
- A link often exists for one dominant reason
 - Two people are in the same family, or are co-workers
- Link community: a set of closely inter-related links

Identifying Link communities

- Hierarchical clustering with a similarity between links to build a dendrogram
 - Each leaf of the dendrogram is a link from the original network
 - Branches of the dendrogram are link communities
- Slice the dendrogram at a suitable level
- Each link placed in a single community
- Each node inherits membership of the communities of all its links

Similarity measure between links

- Node *i* and its neighboring nodes: $n_+(i)$
- Similarity measured only between pairs of links which share a node
- Similarity between e_{ik} and e_{jk} :

$$S(e_{ik},e_{jk}) = |n_+(i) \cap n_+(j)|/|n_+(i) \cup n_+(j)|$$

Which level to slice the dendrogram?

- Measure: Partition density D
 - Total number of links in network: m
 - $P_1, P_2, ..., P_C$: partition of links into C subsets
 - P_c has n_c nodes and m_c links

$$D_c = \frac{m_c - (n_c - 1)}{n_c(n_c - 1)/2 - (n_c - 1)}$$

□ Partition density is average of D_c weighted by the fraction of links in P_c

$$D = \frac{2}{M} \sum_{c} m_{c} \frac{m_{c} - (n_{c} - 1)}{(n_{c} - 2)(n_{c} - 1)}$$

DIFFERENT TYPES OF GROUPS IN A SOCIAL NETWORK

Different methods to identify groups

- Identifying groups based on network structure community detection algorithms
- How about identifying groups based on content, e.g., text or profile attributes?
- Deep Twitter Diving: Exploring Topical Groups in Microblogs at Scale, Bhattacharya et al., CSCW 2014

Identified topical groups in Twitter

Topical Groups = Experts + Seekers

Experts: Users who have expertise on the topic

Seekers: Users who are interested in the topic

@BarackObama
Expert on Politics

@BarackObama
Seeker on Basketball

Identifying topical groups at scale

Crawled data for first 38 million users in Twitter

88 Million lists, 1.5 Billion social links

Identified 36 thousand topical groups

Diversity: Topics and Group Size

No. of			Number of expert	ts		
seekers	< 100	100 - 500	500 – 1K	1K – 5K	5K – 10K	>10K
< 1K	(5416) geology, karate, malaria, neurology, tsunami, psychiatry, radiology, pediatrics, dermatology, dentistry	(132) volleyball, philosophers, tarot, perfume, florists, copywriters, taxi, esperanto				
1K – 5K	(915) biology, chemistry, swimmers, astrophysics, multimedia, semiconductor, renewable-energy, breast-cancer, judaism	(428) painters, astrology, sociology, geography, forensics, anthropology, genealogy, archaeology, gluten, diabetes, neuroscience	(17) architects, insurance, second-life, police, progressives, creativity			
5K – 10K	(166) malware, gnu, robot, chicago-sports, gospel-music, space- exploration, wall-street	(202) horror, agriculture, atheism, attorneys, furniture, art-galleries, ubuntu	(34) psychology, poetry, catholic, hospitals, autism, jazz	(2) coffee, dealers		
10K - 50K	(174) ipod, ipad, virus, Liverpool-FC, choreographers, heavymetal, backstreet-boys, world-cup,	(312) olympics, physics, theology, earthquake, opera, makeup, Adobe, wrestlers, typography, american-idol	(146) tennis, linux, astronomy, yoga, animation, manga, doctors, realtors, wildlife, rugby, forex, php, java,	(67) law, history, beer, golf, librari- ans, theatre, military, poker, conservatives, vegan		
50K- 100K	(7) bbc-radio, UK- celebs, christian- leaders, superstars	(61) hackers, programmers, bicycle, GOP, fantasy-football, NCAA, wwe, sci-fi	(35) medicine, cyclists, investors, recipes, NHL, xbox, triathlon, Google	(37) hotels, museums, hockey, architecture, charities, weather, space		
> 100K	(3) headlines, brits	(49) pop-culture, gospel, BBC, reality-tv, bollywood	(58) religion, actresses, gadgets, graphic-design, directors, lifestyle, gossip, commentators, youtube	(140) books, govern- ment, comedy, en- vironment, baseball, soccer, hollywood, iphone, economics, money	(25) fashion, education, wine, photography, radio, restaurants, science, SEO	(17) music, tech, business, politics, food, sports, celebs, health, media, bloggers, travel, writers

A Small Number of Very Popular Groups

No. of	Number of experts								
seekers	< 100	100 – 500	500 – 1K	1K – 5K	5K – 10K	> 10K			
< 1K	(5416) geology, karate, malaria, neurology, tsunami, psychiatry, radiology pediatrics	(132) volleyball, philosophers, tarot, perfume, florists, copywriters, taxi esperanto							
	dermate (37) h	otels, mu-							
1K – 5K	istry, seums,	hockey,							
	media, architec	´ I							
	oroust c	ather, space							
5K –	$\begin{array}{ c c c c c }\hline (166) & (140) bc \\\hline (166) & (140) bc \\\hline \end{array}$	ooks, govern-	(25) <i>fashio</i>	$n, \mid (17) m$	usic, tech,				
	gospel- explora ment, comedy, en-		education,	busines	business, politics,				
10K -	(174) <i>vironme</i>	(174) vironment, baseball,		g- food,	sports,				
50K	virus, choreog Soccer,	hollywood,	raphy, radi	io, <i>celebs</i> ,	health,				
	metal, iphone,	economics,	restaurants,	media,	bloggers,				
50K- 100K	(7) bl money		science, SEO	travel, v	writers				
	leaders, superstars	GOP, fantasy-football, NCAA, wwe, sci-fi	xbox, triathlon, Google	architecture, charities, weather, space					
> 100K	(3) headlines, brits	(49) pop-culture, gospel, BBC, reality-tv, bollywood	(58) religion, actresses, gadgets, graphic-design, directors, lifestyle, gossip, commentators, youtube	(140) books, govern- ment, comedy, en- vironment, baseball, soccer, hollywood, iphone, economics, money	(25) fashion, education, wine, photog- raphy, radio, restaurants, science, SEO	(17) music, tech, business, politics, food, sports, celebs, health, media, bloggers, travel, writers			

Thousands of Specialized Niche Groups

No. of	Number of experts									
seekers	< 100	100 – 500	500 – 1K		1K – 5K	5K – 10K	>10K			
< 1K	(5416) geology, karate,	(132) volleyball, philosophers, tarot,								
	malaria, neurology,									
	radiology, per (54	16) goology k	6) goology karata		volley	zhall				
	dermatology, dei	ov dei			-	van,				
1K -	(915) <i>biology</i> , <i>ma</i>	ology,	philosophers, tarot,							
5K	interes musi	<i>nami</i> , psychiatry, liology, pediatrics,		perfume, florists, copy- writers, taxi, esperanto						
	media, semicor rad									
	Tellewable-ellerg,			,,						
5K -	breast-cancer, ju dermatology, dentistry									
10K	robot, chicago (91	5) biology, chem-		(428) painters, astrol-						
	gospei-music,									
1077	exploration, wall	istry, swimmers,			ogy, sociology, geogra-					
10K - 50K	(174) ipod, virus, Liverp ast	ipod, Liverpo astrophysics, multi-			phy, forensics, anthro-					
3010	-11									
	metal, backstree me	dia, semicond	pology, genealogy, ar-							
	world-cup, ren				chaeology, gluten, dia-					
50K-	(7) DDC-radio,	3-radio,								
100K	celebs, ch	ast-cancer, juda	neuroscience							
	leaders, supersta	NCAA, wwe, sci-fi	720072, 4224442		ties, weather, space					
>	(3) headlines, brits	(49) pop-culture,	(58) religion	n, actresses,	(140) books, govern-	(25) fashion,	(17) music, tech,			
100K		gospel, BBC, reality-tv,		graphic-	ment, comedy, en-	education,	business, politics,			
		bollywood	design,	directors,	vironment, baseball,	wine, photog- raphy, radio,	food, sports,			
					ossip, com- soccer, hollywood,		celebs, health,			
		mentators,				restaurants, science, SEO	media, bloggers, travel, writers			
					inoney	science, sho	uavel, witters			

Breaking the Twitter stereotype

- Twitter stereotype
 - Popular news on few topics such as sports, entertainment, politics, technology
 - Celebrity gossip, current news, and chatter

- Breaking the stereotype
 - Majority of the population discuss few popular topics, but
 - Smaller groups interested in thousands of niche, specialized topics

Detecting topical groups

 We followed content-based approach to identify topical groups

Could community detection algorithms be used on the social network to detect them?

 Applied BGLL / Louvain algorithm on the Twitter subscription network to identify communities

Detecting topical groups

- Louvain largely unable to detect topical groups, especially the smaller ones (on niche topics)
- Communities detected by Louvain fare better on structural measures like cut-ratio, conductance
- Topical groups do not have good structural quality
 - Poor values for standard community quality metrics such as cut-ratio and conductance

Why do groups form?

- "Common Identity and Bond Theory"
 - Prentice et. al. "Asymmetries in Attachments to Groups and to Their Members: Distinguishing Between Common-Identity and Common-Bond Groups", Personality and Social Psychology Bulletin, 1994
- Identity based groups
- Bond based groups

Common Identity and Bond Theory

Identity Based Groups

Low Reciprocity
Low Personal Interactions
High Topicality of discussions

Examples:
Fans at a football match,
Attendees at a conference

Bond Based Groups

High Reciprocity
High Personal Interactions
Low Topicality of discussions

Examples: Family, personal friends

Analysis of 50 topical groups

- Low reciprocity among members
- Few one-to-one interactions
- Most tweets posted by experts are related to topic
- → Topical groups are identity-based which are difficult to detect via community detection algorithms