

The good and the bad of privacy in Social Media Part II, the bad

Mainack Mondal

IIT KGP, Social Computing course, August 2017

Roadmap

Previous Lecture

How to **better protect privacy** in Online social media sites (OSMs) – the good of privacy

This lecture

Online abuse: The ill side-effect of privacy and how to defend against the online abuse – the bad of privacy

What do we mean by abusive language?

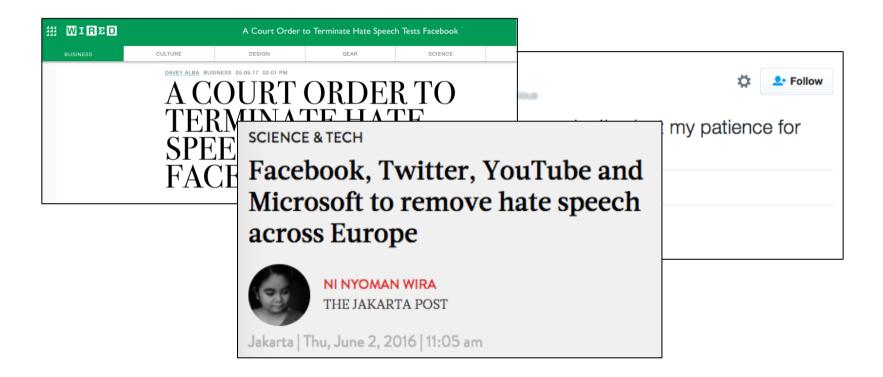
Anonymity and privacy -- required by many, abused by some hate speech, cyberbullying, trolling

Types of abusive language

	Explicit	Implicit
q	"Go kill yourself", "You're a sad little f*ck" (Van Hee et al., 2015a),	"Hey Brendan, you look gorgeous today. What beauty salon did you
cte	"@User shut yo beaner ass up sp*c and hop your f*ggot ass back across	visit?" (Dinakar et al., 2012),
Directed	the border little n*gga" (Davidson et al., 2017),	"(((@User))) and what is your job? Writing cuck articles and slurping
I	"Youre one of the ugliest b*tches Ive ever fucking seen"	Google balls? #Dumbgoogles" (Hine et al., 2017),
	(Kontostathis et al., 2013).	"you're intelligence is so breathtaking!!!!!!" (Dinakar et al., 2011)
p	"I am surprised they reported on this crap who cares about another dead	"Totally fed up with the way this country has turned into a haven for ter-
Generalized	n*gger?", "300 missiles are cool! Love to see um launched into Tel Aviv!	rorists. Send them all back home." (Burnap and Williams, 2015),
	Kill all the g*ys there!" (Nobata et al., 2016),	"most of them come north and are good at just mowing lawns"
	"So an 11 year old n*gger girl killed herself over my tweets? ^_ ^ thats	(Dinakar et al., 2011),
	another n*gger off the streets!!" (Kwok and Wang, 2013).	"Gas the skypes" (Magu et al., 2017)

Source: Waseem et al. (https://arxiv.org/pdf/1705.09899.pdf)

Hate speech: A serious problem for OSMs



OSMs and **Governments** are trying hard to **combat hate speech!**

How to detect hate speech?

Survey: http://www.aclweb.org/anthology/W/W17/W17-1101.pdf

Standard workflow

Extract features

Learn using unsupervised/supervised method

What features do people use?

Content based

Simple surface features: Bag of words, unigrams

Word generalizations: Use synonyms of relevant words

Sentiment of the content

Lexical resources: lists of swear words

Linguistic features: POS, politeness, type dependency relationships

Knowledge-based: Conceptnet

Meta information: user message history

Checking accompanying image/video data

User based

Role of the author while posting

Network based

If people if your network is posting hate speech

Characterizing Hate speech in OSMs

UNESCO reviewed OSM policies to combat hate speech

OSMs should better leverage the data

Need a **better understanding** of online **hate speech characteristics**

[ICDCIT'12] [First Monday'15]

Prior work on detecting hate speech in specific context

Used text based, user based, network structure based features

E.g., hate speech against African-Americans in US

No investigation so far about

Understanding the characteristics of general OSM hate speech

Goal

Better characterizing general hate speech in OSMs

Rest of the talk

- ✓ Who are the targets of Hate in OSMs?
- ✓ Does anonymity play any role on hate speech?
- ✓ Does hate speech vary across geography?
- ✓ What is the context of hate speech?

Rest of the talk

✓ Who are the targets of hate in OSMs?

✓ Does anonymity play any role on hate speech?

✓ Does hate speech vary across geography?

✓ What is the context of hate speech?

Collecting generic hate speech data

Our definition of hate speech

an offensive post, motivated, in whole or in a part, by the writer's bias against an aspect of a group of people

Desirable characteristics of a dataset

Uploader should express hate in the post against a group of people

The precision should be high for our dataset

Our idea: Leverage the sentence structure

Detecting hate speech with sentence structure

l really

< intensity >

Manually collected list of adverbs/ intensifiers or blank

E.g., Really, do

hate

< user intent>

Synonyms of the word "Hate" from a dictionary

E.g., Detest, loathe, abhor

black people

< hate target>

E.g., black people, fat people, n-word

Template 1: " * people ", e.g., ghetto people

Template 2: words from "Hatabase", a crowdsourced hate target database. e.g., n-word

Our hate speech dataset

We used this technique on English Whisper and Twitter posts

Data collected over June '14 to June'15

Total 20,305 Twitter and 7,604 Whisper hate speech posts

Very high precision and not about any specific context

Classifying the hate targets in OSM

We manually classified the hate targets in nine categories

	Categories	Example hate targets	
	Race	n**ga, black people, white people	
Г	Behavior	insecure people, autistic people	
L	Physical aspect	Ugly people, fat people	
	Sexual orientation	gay people	
	Class	ghetto people	
	Gender	pregnant people, c*nt	
	Ethnicity	Chinese people, paki	
	Disability	retards	
	Religion	Jewish people	

Who are the top targets of hate?

Twitter		Whisper		
Hate target	% posts	Hate target	% posts	
Race	48.73	Behavior	35.81	
Behavior	37.05	Race	19.27	
Physical aspect	3.38	Physical aspect	14.06	
Sexual orientation	1.86	Sexual Orientation	9.32	
Class	1.08	Class	3.63	

[&]quot;Soft targets" contribute to a large part of OSM hate speech

Rest of the talk

- ✓ Who are the targets of hate in OSMs?
 Hate based on Race, physical aspect or behavior is most prominent
- ✓ Does anonymity play any role on hate speech?

✔ Does hate speech vary across geography?

✓ What is the context of hate speech?

How to measure the effect of anonymity?

Challenge: Need to compare the behavior of anonymous and non-anonymous accounts in same OSM

We used **posts from Twitter** for our purpose

Twitter have weak identity

Twitter accounts are **not** needed to be associated with a **real identity**

We leverage Facebook's real name policy

Dataset of 100 million unique Facebook names

Create database of millions of personal names

Twitter account without personal names are "anonymous"

Does anonymity enable hate speech?

Category	%tweets posted anonymously (Without personal names)		
Random tweets (Baseline)		40%	
Race		55%	
Sexual orientation		54%	
Physical		49%	
Behavior		46%	

Users post more hate speech anonymously!

Rest of the talk

- ✓ Who are the targets of hate in OSMs?
 Hate based on Race, physical aspect or behavior is most prominent
- ✓ Does anonymity play any role on hate speech?
 Users post more hate speech anonymously
- ✓ Does hate speech vary across geography?

✓ What is the context of hate speech?

Top hate speech categories across countries

Whisper posts contain city level location

We focus on hate speech posted from US, UK, Canada Contributed total 92% of hate speech in our Whisper dataset

Top 3 hate categories			
US	Canada	UK	
Behavior	Behavior	Behavior	
Race	Physical aspect	Physical aspect	
Physical aspect	Race	Sexual orientation	

Hate speech categories from different countries are different What are the corresponding top hate targets?

Top hate targets across countries

We focus on top hate targets in US, UK, Canada

Top 3 hate targets			
US	Canada	UK	
Black people	Fat people	Fat people	
Fake people	Stupid people	Gay people	
Stupid people	Fake people	Stupid people	

There are country specific biases even for hate speech

What about hate speech within a country?

Comparing hate speech across US states

Raw volume of hate speech from a state may be biased

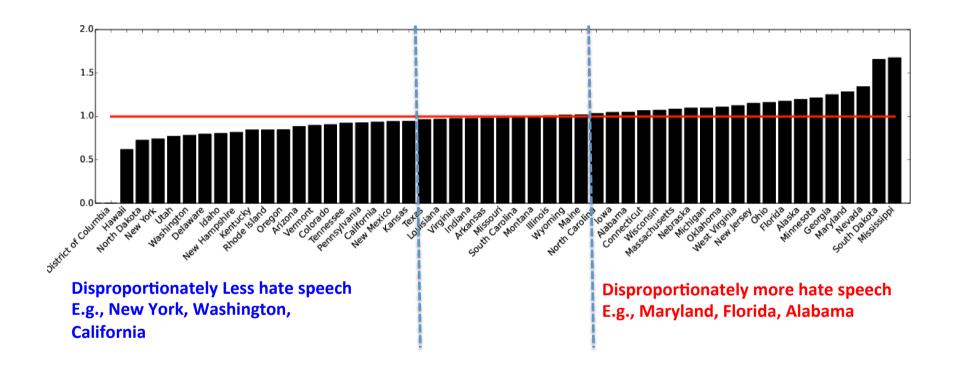
More hate speech might simply be due to more uploaded posts

We compute **relative amount of hate speech** for each US state

Divide **% of hate speech from state X** with **% of total posts from X**Value **more than one** implies comparatively **more hate speech**Value **less than one** implies comparatively **less hate speech**

Does some **US state** post **relatively more/less** hate speech?

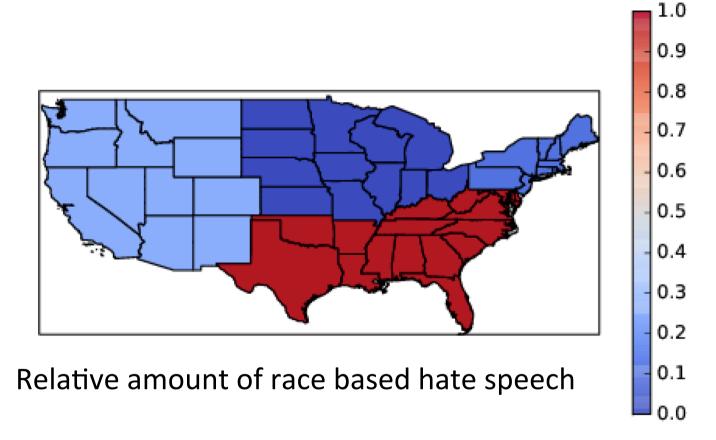
Comparison of related amount of hate speech posted by US states



US states upload disproportionately more/less hate speech

How hate speech from different categories are posted?

Comparison for hate categories across US states

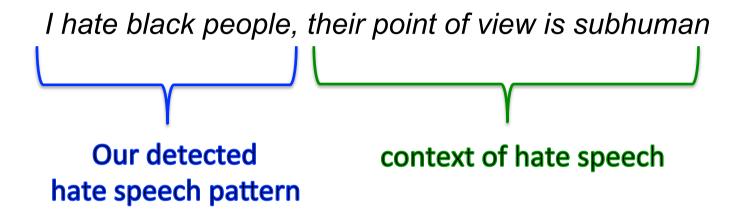


More race based hate speech is uploaded from southern states

Rest of the talk

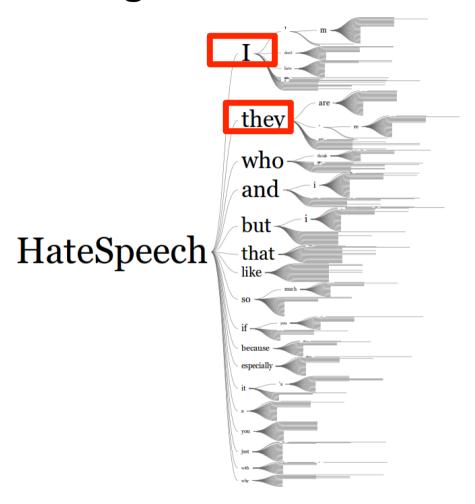
- ✓ Who are the targets of hate in OSMs?
 Hate based on Race, physical aspect or behavior is most prominent
- ✓ Does anonymity play any role on hate speech? Users post more hate speech anonymously.
- ✓ Does hate speech vary across geography?
 Hate speech varies inter as well as intra country
- ✓ What is the context of hate speech?

Identifying the context of hate speech



For each of the hate speech post in our database
We removed the detected hate speech pattern
The resulting text gives us the context

Understanding the context of hate speech



Uploaders justify hate speech by including personal opinions

Summary

Created a high precision hate speech dataset from OSM posts

Hate based on Race, physical aspect or behavior is most prominent

Checked if anonymity have a correlation with posting hate speech More hate speech is posted anonymously

Investigated Geographic variation in hate speech

There are both inter and intra country variations in hate speech

Uploaders justify hate speech by stating their personal beliefs

https://people.mpi-sws.org/~mainack/

Thanks

https://people.mpi-sws.org/~mainack/